Photochemical Reduction of Carbon Dioxide to Formate Catalyzed by p-Terphenyl in Aprotic Polar Solvent

Shinjiro MATSUOKA, Takao KOHZUKI, Chyongjin PAC, and Shozo YANAGIDA* Chemical Process Engineering, Faculty of Engineering, Osaka University, Suita, Osaka 565

Photoreduction of ${\rm CO}_2$ to formic acid and a small quantity of CO can be achieved in aprotic polar solvent by using p-terphenyl as catalyst and triethylamine as a sacrificial electron donor under >290-nm irradiation.

Carbon dioxide fixation using light energy has attracted much interest in view of the grobal greenhouse effect. Electrochemical and photochemical reduction of ${\rm CO}_2$ were extensively studied and novel photocatalysts or photosensitizers have been requisite for the purpose. Recently, we reported that p-terphenyl effectively catalyzes the photoreduction of acetaldehyde to ethanol with triethylamine (TEA) as a sacrificial electron donor under UV-light irradiation. Here, we report that p-terphenyl induces effective photoreduction of ${\rm CO}_2$ to formate and carbon monoxide (CO) in aprotic polar solvent.

In a Pyrex tube (8 mm in diameter) were placed distilled TEA (0.5 cm 3), anhydrous organic solvent (1.0 cm 3) and 10 mg of p-terphenyl (nacalai tesque) or poly(p-phenylene) (PPP) (synthesized by Yamamoto's method). After purging with CO $_2$ gas, the tube was closed off with a gum stopper, and irradiated under magnetic stirring for 15 h at >290 nm with a 500 W high-pressure mercury arc lamp. The products were analyzed by GLPC using an activated carbon column and by HPLC using a Tosoh anion-exclusion column with aqueous phosphate as eluent (2 x 10^{-3} mol dm $^{-3}$).

As is shown in Table 1, the photoreductive formation of formate and CO in anhydrous organic solvent systems was observed, where the photocatalysis of p-terphenyl in N,N-dimethylformamide (DMF) led to the most effective formation of formate and CO (the quantum yield ($\Phi_{1/2HCOOH}$) was 0.072 at 313 nm.). A trace amount of H_2 was detectable. As organic solvent, methanol and ethanol were not suitable for this reaction, but in tetrahydrofuran (THF) and acetonitrile (CH₃CN), small amounts of formate and CO were detected. The turnover number of p-terphenyl for the formation of HCOO⁻ in DMF is about 3, implying a cyclic activity of the system. No formate was observed when the experiments were conducted in the absence of any one of light, CO₂, photocatalysts, and TEA. These results imply that all of the components are essential for the photoreduction of CO₂. Furthermore, the conversion of 13 CO₂ into 13 COO⁻ was clearly indicated by 13 C-NMR spectroscopy, which showed the increase of the 13 COO⁻ resonance at 6 =166.2 ppm under irradiation. The rate in the increase of the signal intensity was almost consistent with the rate determined by HPLC analysis.

Table 1.	Photochemical	Reduction	of	co_2	Catalyzed	bу	Terphenyls	in
Anhydrous	s Organic Solv	ent		_				

Catalyst	Solvent 1.0 cm ³	Photoproduct/µmol ^{a)}			Solubility in solvent		
		HCOO ⁻	CO	Н2	Catalyst ^b mg/cm ³	$\begin{array}{c} \text{CO}_2^{\text{c}} \\ \text{X}_2 \times 10^4 \end{array}$	
<i>p</i> -terphenyl	DMF	42	5.6	1.1	6.6	202	
o-terphenyl	DMF	1.9	0.1	0.4	670	202	
<i>m</i> -terphenyl	DMF	3.6	0.3	0.7	207	202	
PPP	DMF	3.8	1.0	2.9	0	202	
None	DMF	0	0.2	0.1	-	202	
<i>p</i> -terphenyl	CH ₃ CN	11	0.2	0.4	0.83	195	
o-terphenyl	CH ₃ CN	0.3	0	0.2	500	195	
<i>m</i> -terphenyl	CH ₃ CN	1.0	0.1	0.1	42	195	
PPP	CH ₃ CN	1.0	0.3	7.7	0	195	
None	CH ₃ CN	0	0	0.1	-	195	
<i>p</i> -terphenyl	СН _З ОН	0	0	0.2	0.28	56	
<i>p</i> -terphenyl	С ₂ Н ₅ ОН	0	0.8	0.3	-	64	
<i>p</i> -terphenyl	THF	4.8	1.2	0.2	>1.0	100	

a) After irradiation at >290 nm for 15 h. b) Solubility of terphenyls in each solvent at room temperature. c) Mole fraction of the dissolved CO $_2$ gas in each solvent at 25 °C. 6)

It is interesting to note that CO_2 is well soluble in DMF and the solubility of p-terphenyl is relatively higher in DMF than in other organic solvents. However, o-terphenyl or m-terphenyl which are both very soluble in aprotic polar solvent showed much poorer activity than p-terphenyl, suggesting that p-phenylene unit is an important factor for the effective charge separation and electron transfer. In addition, insoluble PPP catalyzed the photoreduction of CO_2 to formate and CO in DMF and $\mathrm{CH}_3\mathrm{CN}$ with low efficiency. It was previously reported²) that photocarboxylation of aromatic hydrocarbons such as phenanthrene, anthracene, and biphenyl occurs in photolyses in the presence of various amines and CO_2 of their dimethyl sulfoxide and DMF solution. In the present photolysis, however, no photocarboxylation was observed. In conclusion, the results in Table 1 indicate the first example of direct photoreduction of CO_2 catalyzed by organic sensitizer without an electron mediator. Futher studies on the novel photochemical reduction of CO_2 are in progress.

References

- 1) I. Taniguchi, "Modern Aspects of Electrochemistry, No. 20," ed by J. O'M. Bockris, R. E. White, and B. E. Conway, Plenum Publishing Corporation, New York (1989), p. 327.
- 2) S. Tazuke and H. Ozawa, J. Chem. Soc., Chem. Commun., 1975, 237.
- 3) S. Tazuke and N. Kitamura, Nature, 275, 301 (1978).
- 4) M. Kanemoto, T. Shiragami, C. Pac, and S. Yanagida, Chem. Lett., 1990, 931.
- 5) S. Matsuoka, H. Fujii, C. Pac, and S. Yanagida, Chem. Lett., 1990, 1501.
- 6) E. Wilhelm and R. Battino, Chem. Rev., 73, 1 (1973).

(Received August 2, 1990)